• Home
  • About Me
  • Katalog Buku
  • Video
  • Daftar Isi Buku

Minggu, 14 Januari 2018

Membuat Trafo Step-Down Untuk Power Supply Perangkat Elektronik

          Perangkat elektronik seperti audio amplifier, charger aki, UPS dan sebagainya membutuhkan tegangan rendah sebelum disearahkan dengan rectifier agar menjadi tegangan rendah arus searah (DC). Untuk mendapatkan tegangan rendah tersebut biasanya digunakan trafo penurun tegangan atau biasa disebut trafo step-down. Di pasaran banyak macam bentuk dari trafo step-down tersebut antara lain :
-   Trafo bentuk kotak, biasanya menggunakan inti (kern) EI, M dan UI
-   Trafo bentuk donat, biasanya menggunakan inti (kern) toroid.

          Untuk pembuatan trafo step-down bentuk kotak yang menggunakan inti (kern) EI, M dan UI tidak akan penulis bahas pada pembahasan kali ini, karena telah penulis bahas pada buku “Merancang dan Membuat Trafo Daya Kecil”. Dengan demikian pada pembahasan kali ini penulis akan menjelaskan cara merancang dan membuat trafo step-down bentuk donat yang menggunakan inti (kern) toroid. Oke langsung saja kita mulai penjelasannya dan jangan lupa menyimak ya, agar sobat bloger bisa dengan mudah dan cepat memahaminya !!!
          Langkah-langkah untuk merancang dan membuat trafo step-down bentuk donat antara lain dapat dijelaskan sebagai berikut :

1.   Menentukan Ukuran Inti (Kern) Trafo
          Sesuai namanya trafo toroid, bentuk inti (kern)-nya berupa susunan plat besi tipis yang disusun secara melingkar menyerupai donat (memiliki lubang di tengahnya). Perlu dipahami bahwa syarat inti (kern) haruslah besi murni tanpa kandungan baja, agar tidak menimbulkan induksi magnet permanen pada saat terinduksi oleh medan listrik. Dengan demikian induksi fluktuatif dari medan listrik arus bolak-balik (AC) dapat ditransformasikan dengan baik. Untuk itu dalam membuat inti (kern) pilihlah lembaran plat tipis yang harus dibakar terlebih dahulu sampai memerah beberapa lama, lalu dibiarkan mendingin secara alami tanpa disiram air atau bahan pendingin lainnya. Pembakaran ini dimaksudkan untuk menghilangkan kadar baja yang terkandung dalam plat tipis tersebut.
          Dalam menentukan ukuran inti (kern) toroid ini kita harus menentukan terlebih dahulu kapasitas atau daya trafo toroid yang akan kita buat. Sebagai contoh kita akan membuat trafo toroid dengan daya 900 watt, tegangan primer 220 volt dan tegangan sekunder 2 x 45 volt (CT), maka luas penampang inti adalah : Afe = √900 = 30 cm².
          Dengan demikian dapat kita tentukan tinggi inti toroid adalah √30 = 5,48 cm maka jari-jari penampang lingkaran toroid adalah 30 / 5,48 = 5,47 cm atau tebal plat tipis yang kita gulung melingkar adalah setebal 5,47 cm dengan jari-jari lubang toroid (R dalam) sepanjang 5,48 + 5,47 = 10,95 cm, sehingga panjang jari-jari luar (R luar) adalah jari-jari lubang (R dalam) + tebal gulungan plat tipis = 10,95 + 5,47 = 16,42 cm. Jika ditimbang berat inti (kern) untuk trafo daya 900 watt sekitar 8 – 15 Kg. 

Gambar 1. Inti (kern) trafo bentuk toroid

2.   Mempersiapkan Inti (Kern) Trafo
          Lapisi inti (kern) trafo dengan prespan yang terbuat dari kertas warna hijau/coklat atau mika warna putih susu, agar kawat email yang akan kita gulung tidak mudah tergores oleh inti trafo yang dapat mengakibatkan kumparan terhubung singkat.

3.   Menentukan Ukuran Kawat Kumparan
          Seperti yang telah dijelaskan pada rancangan trafo dengan inti (kern) berbentuk EI, M atau UI  di buku “Merancang dan Membuat Trafo Daya Kecil” berlaku juga pada rancangan trafo dengan inti berbentuk toroid bahwa untuk menentukan diameter kawat kumparan primer dan sekunder, arus pada tiap kumparan harus ditentukan dari besarnya daya trafo dibagi dengan tegangan kumparan tersebut :
I1 = N1 / E1  dan I2 = N2 / E2
dimana : I1 = arus primer
               N1 = lilitan primer
               E1 = tegangan primer
               I2 = arus sekunder
               N2 = lilitan sekunder
               E2 = tegangan sekunder

Selanjutnya nilai penampang kawat dapat dihitung dengan rumus sebagai berikut :
Penampang kawat kumparan primer : q1 = I1 / s
Deameter kawat kumparan primer : d1 = √ (4.q1) / π
Penampang kawat kumparan sekunder : q2 = I2 / s
Deameter kawat kumparan sekunder : d2 = √ (4.q2) / π

dimana : q1 = penampang kawat lilitan primer
                d1 = diameter kawat lilitan primer
                q2 = penampang kawat lilitan sekunder
                d2 = diameter kawat lilitan sekunder
                 s = kerapatan atau kepadatan arus (3 - 5 A/mm² 

          Dalam hal ini dapat dihitung bahwa arus primer adalah : I1 = 900 / 220 = 4 A. Dengan demikian dengan menetapkan kepadatan arus (s) sebesar 3 A/mm² maka besarnya penampang kawat kumparan primer q1 = 4 / 3 = 1,33 mm², sehingga diameter kawat kumparan primer :
d1 = √ (4 x 1,33) / 3,14
     = √ 1,69
     = 1,3 mm.

          Sedangkan untuk arus sekunder adalah : I2 = 900 / 45 = 20 A. Dengan demikian dengan menetapkan kepadatan arus (s) sebesar 3 A/mm² maka besarnya penampang kawat kumparan sekunder q2 = 20 / 3 = 6,66 mm², sehingga diameter kawat kumparan sekunder :
d2 = √ (4 x 6,66) / 3,14
     = √ 8,48
     = 2,9 mm.

4.   Menghitung Jumlah Lilitan Trafo
          Untuk menenetukan jumlah liltan primen dan lilitan sekunder trafo bisa menghitung terlebih dahulu gulungan per volt (GPV)-nya, bisa juga langsung menghitung jumlah lilitan/gulungan primer (N1) dan gulungan sekunder (N2) sesuai dengan besarnya tegangan primer (E1) dan tegangan sekunder (E2) yang diinginkan.
          Rumus untuk menentukan jumlah lilitan primer : N1 = E1 / (4,44 x Afe x  Bm x f) dan jumlah lilitan sekunder N2 = E2 / (4,44 x Afe x Bm x f)
Dimana : Afe = luas penampang inti (kern) besi
                 Bm = flux density
                 f = frekwensi jaringan listrik

dengan mengambil f = 50 Hz dan Bm = 10-4 wb/cm², maka rumus tersebut menjadi : N1 = 4,5 x (E1 / Afe). Kalau diambil faktor 110% atau 1,1 untuk memperhitungkan kerugian tegangan trafo dalam kondisi berbeban maka rumus teserbut di atas menjadi : N1 = 1,1 x 4,5 x (E1 / Afe) atau 49,5 x (E1 / Afe) dan N2 = 49,5 x (E2 / Afe). Sehingga dalam raancangan trafo toroid ini dapat dihitung :
N1 = 49,5 x (220 / 30)
      = 49,5 x 7,3
      = 361 lilit

N2 = 49,5 x (Vs / Afe)
      = 49,5 x ( 45 / 30)
      = 49,5 x 1,5
      = 74 lilit (untuk CT = 2 x 74 lilit)

5.   Menggulung/Melilit Kawat Pada Inti (Kern)
          Pada tahap ini yang pertama dikerjakan adalah menggulung kawat email pada sebilah bambu sepanjang 25 - 50 cm dengan tujuan agar mempermudah memasukkan dan mengeluarkan kawat email melewati lubang lingkaran inti kern saat proses melilit. Berikutnya tinggal melilitkan kawat email pada lingkaran inti kern yang telah terbalut kertas isolator (prespan). Tentunya dengan memakai azas jari tangan kanan, yaitu sebagaimana tangan kanan memegang inti kern, arah ujung keempat jari adalah arah melingkarnya kawat dan ibu jari menunjukkan letak lilitan selanjutnya. Usahakan penggulungan kawat pada inti kern trafo harus rapat dan rapi.


Gambar 2. Proses menggulung kawat pada inti toroid dengan sebilah bambu

6.   Mengetes Trafo Dengan Multitester
          Lakukan pengukuran dengan multitester pada posisi Ohm x1 atau x10 untuk mengetahui hubungan antar kawat pada kumparan primer, antar kawat pada kumparan sekunder atau antara kawat pada kumparan primer dan sekunder. Jika semua pengetesan dengan multimeter tersebut diatas bagus lanjutkan pengukuran tegangan output pada kumparan sekunder dengan memberi tegangan input sebesar 220 V pada kumparan primer dengan menggunakan multitester pada posisi Volt AC x250.

7.   Memasang Terminal Kabel
          Lakukan pemasangan kabel dan terminal pada ujung-ujung trafo baik pada ujung-ujung kumparan primer maupun sekunder. Setelah itu lanjutkan dengan mencelup kumparana pada minyak trafo atau sirlak dan melapisi trafo dengan kain pita atau kertas prespan atau mika untuk perlindungan kawat agar padat dan tidak mudah tergores

8.   Mencelup Kumparan Dengan Minyak Trafo (Sirlak)
          Mencelupkan kumparan hasil gulungan dengan minyak trafo atau sirlak bertujuan agar lilitan kawat lebih padat dan statis, tidak mudah bergerak atau berubah letaknya dan tidak mudah tergores atau lecet. Kemudian lanjutkan dengan membalut semua lilitan dengan kain pita atau kertas prespan atau mika. Dengan demikian jadilah sudah trafo toroid kapasitas 900 Watt atau 20 Amper yang telah kita buat.

9.   Menguji Coba Trafo
          Pada proses uji coba bahwa trafo yang berkwalitas tidak akan bergetar dan panas pada saat diberi beban. Pada proses ini harus dilakukan uji coba trafo dengan memberi tegangan input sebesar 220 V pada kumparan primer dan ukur tegangan output pada kumparan sekunder apakah dihasilkan tegangan output sebesar 45 V dengan stabil pada kanan dan kiri (CT). Jika stabil lanjutkan dengan memasang beban sesuai kapasitasnya (maksimal 900 W) untuk bebarapa saat (sekitar 1 jam), apakah tegangan output pada kumparan sekunder tetap stabil pada angka 45 V pada kanan dan kiri (CT). Jika tegangan output stabil dan fisik trafo tidak bergetar dan tidak panas meskipun diberi beban maksimal untuk beberapa lama, maka berarti trafo tersebut dinyatakan cukup berkwalitas dan layak untuk digunakan.


Gambar 3. Trafo step-down bentuk toroid yang sudah jadi

Jumat, 01 Desember 2017

Membuat Panel Pengalih Daya 1 Fasa Secara Manual dan Automatic

          Sebelumnya telah dibahas panel pengalih daya secara otomatis atau yang biasa disebut Automatic Transfer Switch (ATS). Pada kesempatan kali ini penulis akan membahas tentang panel pengalih daya dari sumber listrik utama (PLN) ke sumber listrik cadangan (Genset) atau sebaliknya secara manual dan otomatis, yakni dilengkapi dengan selector switch. Sehingga dapat digunakan untuk memilih pengoperasian secara manual ataupun secara otomatis pada saat sumber listrik utama dari  PLN mengalami pemadaman,
        Panel pengalih daya sederhana ini diperuntukan bagi rumah atau gedung perkantoran yang menggunakan sumber listrik 1 fasa, tetapi tidak menutup kemungkinan untuk digunakan pada sumber listrik 3 fasa yang tentunya dengan merubah pengawatannya. Panel pengalih daya 1 fasa ini terdiri dari beberapa komponen antara lain yaitu :
- MCB 1 fasa sebanyak 2 buah
- Selector switch 3 posisi (Man – O – Auto) sebanyak 1 buah
- Push button On atau Start sebanyak 1 buah
- Push button Off atau Stop sebanyak 1 buah
- Tmer (TDR) sebanyak 1 buah
- Relay AC sebanyak 1 buah
- Kontaktor magnet sebanyak 2 buah
- Lampu indikator sebanyak 2 buah

Untuk lebih jelasnya sobat blogger bisa melihat skema diagram berikut dibawah ini.


Gambar 1. Diagram kontrol panel pengalih daya 1 fasa


Gambar 2. Diagram daya panel pengalih daya 1 fasa



Gambar 3. Komponen-komponen panel pengalih daya 1 fasa yang telah dirakit


Cara Kerja Rangkaian Panel Pengalih Daya :

Posisi Manual :
          Saat selector switch pada posisi manual dengan kondisi suplai PLN, jika tombol on ditekan maka yang bekerja adalah kontaktor PLN (K1), karena arus listrik mengalir ke koil K1 melalui MCB PLN (MCB 1), selector switch (posisi manual), tombol stop, tombol on dan kontak NC K2, yang selanjutnya dikunci oleh kontak NO K1. Jika terjadi pemadaman dari PLN maka rangkaian menjadi tidak aktif atau kembali pada kondisi semula sehingga sumber listrik genset dapat dilairkan ke koil K2 melalui MCB genset (MCB 2), kontak NC K1 dan kontak NC relay, dengan demikian kontaktor genset (K2) akan bekerja. Jika sumber PLN hidup kembali maka kita harus kembali menekan tombol on untuk mengoperasikan kontaktor PLN (K1) agar dapat bekerja kembali yang tentunya kontaktor genset (K2) harus dalam kondisi tidak bekerja. Kita dapat juga memutuskan aliran PLN walupun sumber PLN tidak padam yaitu dengan menekan tombol stop.

Posisi Automatic :
          Saat selector switch pada posisi automatic dengan kondisi suplai PLN maka yang bekerja adalah kontaktor PLN (K1), karena arus listrik mengalir ke koil K1 melalui MCB PLN (MCB1). Jika terjadi pemadaman dari PLN maka secara otomatis rangkaian menjadi tidak aktif atau kembali pada kondisi semula dan rangkaian tersebut siap menunggu apakah sumber listrik PLN akan menyala kembali atau sumber listrik genset yang akan masuk. Jika yang masuk adalah sumber listrik genset maka rangkaian akan mensuplai beban secara otomatis melalui MCB genset (MCB2), kontak normally close (NC) K1, NC relay dan ke koil kontaktor genset (K2) untuk mengaktifkan kontak-kontak K2.
         Selanjutnya jika sumber listrik PLN kembali meyala maka secara otomatis rangkaian akan memutuskan sumber listrik genset (meskipun saat itu masih disuplai sumber listrik genset) yaitu dengan membukanya kontak NC relay. Pada saat yang sama kontak normally open (NO) time delay relay (TDR) akan menunggu untuk terhubung (berdasarkan setting waktu TDR) sampai genset telah kita matikan, sehingga akan mengalirkan arus listrik ke koil K1 untuk mengaktifkan kontak-kontak K1 kembali. Dengan masuknya sumber listrik PLN maka koil TDR, Relay dan K2 dalam keadaan tidak aktif, sehingga rangkaian tersebut akan lebih aman.